Identification of *Klebsiella granulomatis* strain K22-14 16S rRNA gene and its primer design

N.Mehta¹, A.Raikwar¹, P.Chauhan¹, S.Kushwaha¹ and K.R.Pardasani²

¹Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal - 462051, Madhya

Pradesh, India

² Department of Mathematics and Computing Applications, Maulana Azad National Institute of Technology, Bhopal - 462051, Madhya Pradesh, India.

Abstract:

Klebsiella granulomatis is gram-negative bacteria of the genus *Klebsiella* which causes sexually transmitted disease (STD) *Donovanosis* and urinary tract infection in older persons. In the present work, *in silico* approach for primer designing has been implemented; to gather more information about the bacterium. Primer plays an important role to initiate the process of Polymerase Chain Reaction (PCR), which amplifies DNA sequences. Proper primer designing is one of the most important parameter for successful DNA sequencing. Plethora of bioinformatics programs for PCR primer design reflects the central role of PCR experiments in modern molecular biology and in the –omics era. The work summarizes the flowchart approach to design primer for *Klebsiella Granulomatis* strain, to study its characteristics and generate specific primer sequences using bioinformatics tool. Result reveals a dire need to develop strategies through wet lab experiments to obtain effective drug target for curation of this deadly disease *Donovanosis*.

Keywords: Donovanosis, Klebsiella Granulomatis, Polymerase Chain Reaction and Primer.

Introduction:

Bioinformatics is an interdisciplinary research area which may be broadly defined as the interface between biological and computational sciences and the solutions of which are obtained using computational tools, software and systems. One of the most significant roles of Bioinformatics is to design and generate primer sequences. Primers are short oligonucleotides which are responsible for amplification of DNA sequences through polymerase chain reaction (PCR). Amplified DNA sequences are used during experimentation in biotechnology and molecular biology to find possible mutation detection, restriction fragment length polymorphism, develop strategies for drug designing, etc. Klebsiella granulomatis bacterium whose primer sequence of K22-14 16S rRNA strain is needed to be designed as it causes sexually transmitted disease (STD) Donovanosis. [1] Various Bioinformatics tools and software are available on World Wide Web for designing primer. [2] The motivation behind this work was to prevent the spread of Donovanosis by designing primer through *in* silico approach. It is mandatory to perform PCR wet lab experiments for evaluating the result predicted by various computational approaches for validation. [3]

Material and Methods: *Primer and approach for its design:*

A primer is a single stranded short synthetic oligonucleotide which consists of 18 - 30 nucleotides and is used in molecular techniques right from PCR to DNA sequencing. Primers are to be designed in such a way that they should be the reverse complement of a region in a DNA template to which it should anneal as shown in figure 1. After the process of annealing, multiple copies of DNA template sequences are produced during PCR experiments. It is useful in DNA sequencing, cloning and construction of a suitable vector and for study of genetic diseases. [4] During PCR experiment, the performance and output mainly depends on the efficiency and the binding affinity of primers. The characteristics which play an important role for an oligonucleotide to act as a primer for PCR depends on various factors such as the duplex stability of mismatched nucleotides and their location, the efficiency with which the polymerase can recognize and extend a mismatched duplex, and the kinetics of association and dissociation of primertemplate duplexes at the annealing and extension temperatures. A primer which is not designed properly can result in less or product due to non-specific no amplification or primer-dimer formation.

3' GACCTGAAAAGAC 5'	PRIMER		
5' CTGGACTTTTCTGGATGGACTGATTACC 3'		DNA template sequence	
Sample sequence, not resemblin	g any actual sequence		

Figure 1: Annealing of primer with DNA template sequence. The above figure pictorially shows the annealing process taking place between generated primer and the DNA template sequence

Table 1: Main factors and attributes affecting characteristics features while designing primer.

Sequence Feature	Characteristics	
Sequence:	• Avoid runs of 3 or more G or C at the 3' end	
	• Avoid a T at the 3' end	
	• Avoid mismatches at the 3' end	
	• Avoid complementary sequences within a primer	
	and between primers	
	Avoid primer with hairpin loop	
	Avoid Dimers and false priming	
	Avoid repetitive sequence for proper specificity	
Length:	Between 18–30 nucleotides	
GC content:	Between 40–60%	
Tm:	$Tm = 2^{\circ}C x (A+T) + 4^{\circ}C x (C+G), Tm = 45 - 65^{\circ}C$	
	Use nearest-neighbour thermodynamic values for estimating	
~	range of melting temperature.	
Concentration:	Between 0.1–0.5 μM (0.2 μM)	
Therefore following basic facto		
considered while designing a specific [10]		
primer as mentioned in Table 1. [5, 6, 7, 8] Specification of primers		
Degeneracy in primer sequence taken into consideration.		
primers based on the amino aci		
of conserved regions are used to		
-		
0	re being 4) primers should not have self-annealing	
developed specifically for	C / 1	
primer design. Inosine shou	0 1	
included in sequencing prin		
either do not work or	give poor dimers"	
experimental sequencing resu		
mutations are to be introduc	5	
primer into the PCR prod		
important to leave at least thr		
e 3' end of the primer which are Donovanosis		
homologous to the templa	11 1	
Mismatches at these sites w	vill greatly shown in figure 2.	

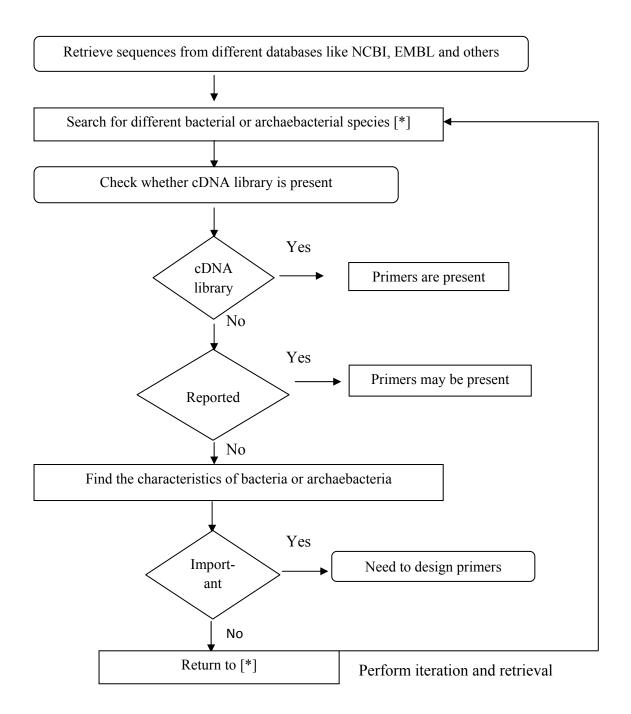


Figure 2: Flowchart approach developed for selection of bacterial organism for primer design

The NCBI database is used to retrieve sequences and finding out valid sequences which does not have cDNA library and whose complete sequence is present. Searching with the above mentioned flowchart approach; *Klebsiella granulomatis* strain K22-14 16S ribosomal RNA gene was obtained.[11] General details shown on NCBI webpage:

- 1) GenBank ID EU333881.1
- 2) cDNA library is absent
- 3) Length of complete sequence 1471 base pairs.
- 4) Date of availability of sequence in NCBI 13 Jan 2008
- 5) Isolation source: Soil from cold desert of Indian Himalayas

Primer3 Output

No mispriming library specified Using 1-based sequence positions OLIGO <u>start len</u> gc% 3' <u>seq</u> tm any LEFT PRIMER 301 20 60.02 55.00 3.00 1.00 CAGCCACACTGGAACTGAGA RIGHT PRIMER 504 20 60.02 55.00 4.00 1.00 GTTAGCCGGTGCTTCTTCTG SEQUENCE SIZE: 1471 INCLUDED REGION SIZE: 1471

Figure 3: Output shown by Primer3

Note: None of the figure is copied from any research paper, book, websites, etc

6) Taxonomy Id – 39824 Website link:

www.ncbi.nlm.nih.gov/nuccore/164504839 Klebsiella granulomatis is gram-negative, rod shaped bacteria of the genus Klebsiella known to cause the sexually transmitted disease (STD) Donovanosis. [12] It is also called Calymmatobacterium granulomatis and it ranks 2nd to E.Coli for causing urinary tract infection in older persons. [13] It has cytoplasmic membrane, thin peptidoglycan layer and polysaccharidebased capsule and it is pathogenic for people with chronic pulmonary disease, enteric pathogenicity and rhinoscleroma. [14] Feces are the most significant source of patient infection, followed by contact with contaminated instruments. *Klebsiella* pneumonia is a necrotizing process with a predilection for debilitated people and it has a high mortality rate of approximately 50% even with antimicrobial therapy. The mortality rate approaches 100% for persons with alcoholism and bacteraemia. The proper clinical designation for Donovanosis is granuloma inguinale and it is result of infection Calymmatobacterium by granulomatis. Because of limited medical treatments available, the disease goes untreated and unnoticed. The destructive nature of Donovanosis also increases the risk of super infection by other pathogenic microbes. At least one person in India suffers from auto-amputation of genital organs every year because of Donovanosis. [15]

Need to design a primer for Klebsiella granulomatis through Primer3

The cDNA library ensures that the primer has been designed for a particular gene and has been used in PCR experiments, but cDNA library is absent for this mentioned [16] *Donovanosis* caused gene. bv Klebsiella granulomatis is a STD and it affects the sensitive tissues in the genital Wet-lab techniques parts. require sophisticated instruments and large quantity of DNA sequences to perform a frequent experiment which is not easily available, as samples is to be taken from genital part of the infected person which may be against the ethics and may hurt their sentiments. Also the cost for performing wet lab experiments is very high when compared to in silico approaches.

Different primer designing tools are available for finding short oligonucleotide sequences i.e. primer. [17, 18] But for the present study, Primer3 was selected (http://frodo.wi.mit.edu/primer3/) as it suggests PCR primer for a variety of applications. For example: To create STSs (sequence tagged sites) for radiation hybrid mapping or to amplify sequences single nucleotide polymorphism for discovery. Primer3 can also select single primers for sequencing reactions and can oligonucleotide hybridization design probes. Primer3 consider many factors which include melting temperature, length, GC content, 3' stability, estimated secondary structure, the likelihood of annealing to DNA template sequence or

amplifying undesirable sequences (for example interspersed repeats), the likelihood of primer-dimer formation between two copies of the same primer, and the accuracy of the source sequence. [19] Reasons to choose Primer3 are as follows. 1) It is the most popular used software for primer designing and developed at MIT, USA. 2) It provides sophistication in selection of parameters while designing primers. 3) When performed comparative analysis with other tools, it showed better results.

Primer3 accepts many options that specify which primers are acceptable and better than others. In WWW interface, the user selects these options through text boxes, check boxes, and pull-down menus. Primer3 examines all primer pairs that satisfy the constraints and finds pairs that are closest to the optimum. By default WWW interface tries to balance equally primer length, primer melting temperature, product length. Primer3 and never considers a primer that is unacceptable because of its position and if it seems as though very few primers are even being considered, the user might need to modify the maximum and minimum product size options, or expand the included region.

Result and Discussion:

• Left Primer:

CAGCCACACTGGAACTGAGA

- Right Primer:
 GTTAGCCGGTGCTTCTTCTG
- Length: 20 base pair
- Tm : 60.00 degree C
- GC: 55 %
- Sequence Size: 1471, Included region size: 1471

Klebsiella granulomatis strain K22-14 16S ribosomal RNA gene complete sequence is inputted in Primer3 tool and with default parameters it is submitted on web. The result so obtained is mentioned below in figure3. Primer sequence so obtained have all its parameters in a verified range and this primer sequence must be used in PCR to amplify the infected *Klebsiella granulomatis* strain for wet lab experiments.

Conclusion:

The key to PCR lies in the design of the oligonucleotide primers. Several two parameters including the length of the primer, %GC content and the 3' sequence is need to be optimized for successful PCR. The increasing use of information from the internet and the sequences held in gene databases are practically the starting points while designing primers and reaction conditions for PCR. A number of in silico approaches such as Primer3 and others have speed up the process of primer design and to be less troublesome. Klebsiella granulomatis strain K22-14 16S ribosomal RNA gene has shown very severe impact affecting human health and this primer sequence should be used to generate multiple copies so that proper curation of *Donovanosis* can be done by developing a potential drug target through various chemo informatics and drug design strategies which will become boon for living world, at large.

Acknowledgement:

We are grateful to express our deep sense of gratitude and indebtedness to Prof. K.R. Pardasani (Former Head, Department of Mathematics and Computing Applications) for support and untiring supervision. Also, we are thankful to all members of Department of Bioinformatics and Department of Mathematics at Maulana Azad National Institute of Technology – Bhopal.

References:

- [1] O'Farrell N. Sex Transm Infect, 2003; 78: 452 - 457.
- [2] Binas M. *Bio techniques*, 2000; 29: 988-990
- [3] He Q, Marjamaki M, Soini H, Mertsola J, Viljanen MK. *Bio techniques*, 1994; 17: 82-87
- [4] Kamel A. Abd-Elsalam. *African Journal of Biotechnology*, 2003; Vol. 2 (5): 91-95
- [5] Rychlik, W., W.J. Spencer, and R.E. Rhoads *Nucleic Acids Res*, 1990; 18: 6409-6412.

- [6] Chen H, Zhu G. *Bio techniques*, 1997; 22: 1158-1160
- [7] Linz U, Delling U, Rubsamem-Waigmann J. Clin. Chem. Clin. Biochem. 1990; 28: 5-13
- [8] SantaLucia JJr, Allawi HAT, Seneviratne PA. *Biochemistry* 1996; 35: 3555-3562
- [9] C W Dieffenbach, T M Lowe and G S Dveksler *Genome Res.*, 1993; 3: S30-S37
- [10] Erlich HA, Gelfand D, Sninsky JJ Science 1991; 252: 1643-1651
- [11] M. Drancourt, C. Bollet, A. Carta and P. Rousselier, *International Journal of Systematic and Evolutionary Microbiology*, 2001; 51: 925–932
- [12] Ryan KJ; Ray CG. Sherris Medical Microbiology 2004 (4th ed.) McGraw Hill; 370
- [13] Ian M. Mackay, Gerry Harnett, Neisha Jeoffreys, Ivan Bastian, Kadaba S Sriprakash,

David Siebert and Theo P. Sloots. *Clinical Infectious Diseases* 2006; 42: 1431–1438

- [14] R. Podschun and U. Ullmann, Clinical Microbiology Reviews, 1998; 11: 589–603
- [15] TS Chandra Gupta, Thrimurthulu Rayudu, Srinivasa V Murthy Indian Journal of Dermatology, Venereology and Leprology, 2008; 74: 490 – 492
- [16] Clifford F. Brunk, Jinliang Li, and Erik Avaniss-Aghajani, Curr. Issues Mol. Biol, 2002; 4: 13-18
- [17] Gorelenkov V, Antipov A, Lejnine S, Darasella N, Yuryev A. *Bio techniques*, 2001; 31: 1326-1330
- [18] Lowe T, Sharefkin J, Yang SQ, Dieffenbach CW. Nucleic Acids Res. 1990; 18: 1757-1761
- [19] Steve Rozen and Helen Skaletsky, Bioinformatics Methods and Protocols, NJ, vol. 132: 365-386